



1 2

## TECHNICAL MEMORANDUM

| 6 | DATE: | December 14, 2016                                                  |
|---|-------|--------------------------------------------------------------------|
| 5 | RE:   | Technical Memorandum #32 - Spring and Fall 2016 Ground Water Index |
| 4 | FROM: | Brad Newton, Ph.D., P.G.                                           |
| 3 | TO:   | Mario Iglesias, General Manager NCSD                               |
| - |       |                                                                    |

#### 7 INTRODUCTION

6 Groundwater surface elevations (GSE) underlying the Nipomo Mesa are regularly 9 measured at many places (wells) across the mesa. The Spring and Fall 2016 Ground Water 10 Index (GWI) has been computed from GSE and presented herein along with historical GWI 11 from 1975 to present based on these groundwater surface elevation measurements collected 12 during spring and fall across the Nipomo Mesa. Limited measurements of GSE were available 13 for the years 1982, 1983, 1984, 1994 and 1997, precluding a reliable calculation of GWI for those 14 years.

Hydrologic processes which comprise the following series of water balance equations were related to the GWI and correlations coefficients were computed. Correlation does not require a causal relationship, however in this case, where ground water elevations are the integration of these hydrologic processes, causality is implicit. The water balance equations and the correlation results were presented at the December 10, 2014 NCSD Board of Directors meeting:

| 21 | Land Surface Water Balance                                           |
|----|----------------------------------------------------------------------|
| 22 | $R = Ru + I_r + E_{\prime}$                                          |
| 23 | $\mathbf{P} = \mathbf{I}_{\mathbf{p}},$                              |
| 24 | $I_{tot} = I_r + I_p = R + P$ , when Ru and E assumed to equal zero, |
| 25 | Soil Profile Water Balance                                           |
| 26 | $\Delta Ss = I_{tot} - CU - Re,$                                     |
| 27 | Substituting for "Itot" and rearranging yields,                      |
| 28 | $Re = R + P - CU - \Delta Ss;$                                       |
| 29 | Aquifer Water Balance                                                |
| 30 | $\Delta Sgw = Re + F_{in} - F_{out} - P,$                            |
| 31 | Substituting for "Re",                                               |
|    |                                                                      |

 $t: \verb| district projects \verb| water resources mgmt \verb| gw index \verb| 20161214 tm32 2016 gwi.doc||$ 

# TO: Mario Iglesias, GM NCSDRE: Spring and Fall 2016 GWIDATE: December 14, 2016Page 2 of 10

| 1  |                                                                | $\Delta Sgw = R - CU - \Delta Ss + F_{in} - F_{out}$                               |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2  | Summary Water Balance                                          |                                                                                    |  |  |  |  |  |  |  |
| 3  | $GWI \cong \Delta Sgw = R - CU - \Delta Ss + F_{in} - F_{out}$ |                                                                                    |  |  |  |  |  |  |  |
| 4  | where:                                                         | where:                                                                             |  |  |  |  |  |  |  |
| 5  | R                                                              | = Rainfall (measured),                                                             |  |  |  |  |  |  |  |
| 6  | Ru                                                             | u = Runoff (assumed zero),                                                         |  |  |  |  |  |  |  |
| 7  | Е                                                              | E = Evaporation from surface (assumed zero)                                        |  |  |  |  |  |  |  |
| 8  | Ir                                                             | $I_r$ = Infiltration of Rainfall (calculated from water balance),                  |  |  |  |  |  |  |  |
| 9  | Ip                                                             | $I_p$ = Infiltration of Pumped Water (calculated from water balance),              |  |  |  |  |  |  |  |
| 10 | CU                                                             | CU = Consumptive Use (calculated from land use and climate),                       |  |  |  |  |  |  |  |
| 11 | $\Delta Ss$                                                    | $\Delta Ss$ = Change in Soil Storage (calculated from I, CU, and soil properties), |  |  |  |  |  |  |  |
| 12 | Re                                                             | Re = Recharge (calculated from $I_{tot}$ and $\Delta S_s$ ),                       |  |  |  |  |  |  |  |
| 13 | ΔSgw                                                           | = Change in Ground Water (calculated from water balance),                          |  |  |  |  |  |  |  |
| 14 | F <sub>in</sub>                                                | = Ground Water Flow In (calculated from groundwater gradients and                  |  |  |  |  |  |  |  |
| 15 |                                                                | stratigraphy),                                                                     |  |  |  |  |  |  |  |
| 16 | Fout                                                           | = Ground Water Flow Out (calculated from groundwater gradients and                 |  |  |  |  |  |  |  |
| 17 |                                                                | stratigraphy),                                                                     |  |  |  |  |  |  |  |
| 18 | Р                                                              | = Pumped Water (measured).                                                         |  |  |  |  |  |  |  |
| 19 |                                                                |                                                                                    |  |  |  |  |  |  |  |
| 20 | The Ni                                                         | pomo Mesa Management Area (NMMA) Technical Group (TG) has not                      |  |  |  |  |  |  |  |
| 21 | reviewed this                                                  | s technical memorandum, its findings, or any presentation of this evaluation.      |  |  |  |  |  |  |  |

22

### 23 **RESULTS**

24 The Spring 2016 GWI is 62,000 AF and the Fall 2016 GWI is 50,000 AF (Table 1, Figure 1), a 25 slight increase from the historic low occurring last year. The decline in the GWI since the year 26 2012 is severe and related to the drought. Rainfall from year 2013 to present has been 27 approximately forty-three percent of the long-term average. However, the GWI has been in 28 decline since the year 2001 where rainfall had been slightly above average. Consumptive use of 29 ground water produced is certainly a contributing factor to the GWI (see Summary Water 30 Balance equation above and Correlation Coefficients in Table 3) and the only significant 31 component of the hydrologic inventory that is currently being managed. Given the continuing 32 drought condition this year, the slight increase in the GWI for Spring and Fall 2016 is likely in

TO: Mario Iglesias, GM NCSDRE: Spring and Fall 2016 GWIDATE: December 14, 2016Page 3 of 10

response to a reduction in Consumptive Use resulting from increased conservation efforts by
purveyors and others, and the new water brought to the NMMA through the Nipomo
Supplemental Water Project.

The 2016 Key Well Index (KWI) value (15.3 ft msl) has increased from the previous year (10 ft msl), and remains in the Severe Water Shortage Condition (see Methodology for KWI explanation). The KWI generally follows the same historical trends as the GWI (Figure 1).

7

#### 8 METHODOLOGY

9 The calculation of spring and fall GWI are based on GSE measurements regularly made by 10 San Luis Obispo County Department of Public Works (SLO DPW), NCSD, USGS, and 11 Woodlands. The integration of GSE data is accomplished by using computer software to 12 interpolate between measurements and calculate GWI within the principal production aquifer 13 assuming an unconfined aquifer and a specific yield of 11.7 percent. Limited measurements of 14 GSE were available for the years 1982, 1983, 1984, 1994 and 1997, precluding a reliable 15 calculation of GWI for those years.

### 16 Groundwater Surface Elevation Measurements

Groundwater surface elevation data were obtained from SLO DPW, NCSD, USGS, and Woodlands. SLO DPW measures GSE in monitoring wells during the spring (April) and the fall (October) of each year. Woodlands and NCSD measures GSE in their monitoring wells monthly. For the years 1975 to 1999, available representative GSE data were used to compute GWI. For the years 2000 to 2011, only GSE data from the same 45 wells were used to compute GWI.

The GSE data was reviewed in combination with well completion reports and historical hydrographic records in order to exclude measurements that likely do not accurately represent static water levels within the principal production aquifer. Wells that do not access the principal production aquifer or were otherwise determined to not accurately represent static water levels within the aquifer were not included in analysis.

### 28 Groundwater Surface Interpolation

29 The individual GSE measurements from each year were used to produce a GSE field by 30 interpolation using the inverse distance weighting method.

### 31 Ground Water Index

The GWI is defined as the annually normalized value of the saturated volume above sea level and bedrock multiplied by the specific yield of 11.7 percent. The GWI is comprised from

 $t: \verb|district projects\verb|water resources mgmt\verb|gw index\verb|20161214 tm32 2016 gwi.doc||}$ 

TO: Mario Iglesias, GM NCSDRE: Spring and Fall 2016 GWIDATE: December 14, 2016Page 4 of 10

1 approximately 45 ground water elevation measurements made by the County of San Luis 2 Obispo each April and October. The value of the Ground Water Index was computed for an 3 area approximately similar to the NMMA Boundary. The base of the saturated volume is mean 4 sea level surface (elevation equals zero) or the bedrock, whichever is higher. The bedrock 5 surface elevation is based on Figure 11: Base of Potential Water-Bearing Sediments, presented in 6 the report, Water Resources of the Arroyo Grande - Nipomo Mesa Area (DWR 2002). The 7 bedrock surface elevation was preliminarily verified by reviewing driller reports obtained from 8 DWR. The specific yield is based on the average weighted specific yield measurement made at 9 wells within the Nipomo Mesa Hydrologic Sub-Area (DWR 2002, pg. 86). The GWI is similar to 10 the Key Well Index presented in the Nipomo Mesa Management Area Technical Group annual 11 report to the Court, but is not directly comparable.

#### 12 Key Well Index

The Key Well Index (KWI) was developed by the NMMA Technical Group from eight inland wells representing the whole of the groundwater basin within the NMMA. The Key Well Index was defined for each year from 1975 to present as the average of the normalized spring groundwater data from each well. The lowest value of the Key Well Index could be considered the "historical low" within the NMMA.

#### 18 Hydrologic Inventory

The time series values of the components of the hydrologic inventory used in this analysis were taken from trial exhibits presented during litigation. The correlation coefficient was calculated for each element of the inventory and GWI, and then ranked. Time series were lagged where conditions of system memory are physically feasible.

23 The relationship between each hydrologic process, represented in the summary water 24 balance equation, and the GWI was ranked by computing the correlation coefficient. Large 25 correlation coefficient and causality indicates a high efficacy of developing a successful model. 26 Lagged time series showed no improvement in and often greatly degraded the correlation 27 coefficients. The relationship between the cumulative sum of departure from the mean rainfall 28  $(CSDM_r)$  and GWI has the highest correlation coefficient, 0.713. The variation in the  $CSDM_r$ 29 explains 71% of the variation in the GWI over time. This is anticipated in this basin where 30 groundwater is primarily replenished by rainfall. The second highest correlation exists between 31 Consumptive Use (CU) and GWI explaining an additional 10% of the GWI variation when 32 added to the CSDM<sub>r</sub>, a total correlation coefficient of 0.816. Thus, 81% of the variation in GWI is 33 explained by the combined CSDM<sub>r</sub> and CU. Combining CSDM<sub>r</sub> and total production resulted 34 in a lesser correlation coefficient of 0.746. Groundwater Flow in to (F<sub>in</sub>) and out from (F<sub>out</sub>) the 35 mesa area, together as net flow (Net F), were added to CSDM<sub>r</sub> which slightly degraded the

TO: Mario Iglesias, GM NCSDRE: Spring and Fall 2016 GWIDATE: December 14, 2016Page 5 of 10

1 overall correlation with GWI; a correlation coefficient of 0.811. However, when CSDM<sub>r</sub>, CU, 2 and Net F are combined, the overall correlation with GWI improves very slightly. This final 3 correlation coefficient is 0.817 (Tables 2 and 3). Therefore, rainfall amounts are the largest 4 influence on the amount of ground water. The next most important process related to the 5 amount of ground water is consumptive use. A scatter plot was prepared to determine if this 6 correlation is bias over the range of water levels (Figure 2). The slope of the linear trend line is 7 0.986 and the scatter about the linear regression is consistent over the range of values 8 suggesting that no bias in the water balance equation exists as compared to groundwater 9 elevation.

10

#### 11 **REFERENCES**

- 12 Department of Water Resources (DWR). 2002. Water Resources of the Arroyo Grande Nipomo
- 13 Mesa Area, Southern District Report. 2002.
- 14

#### TO: Mario Iglesias, GM NCSD

RE: Spring and Fall 2016 GWI

DATE: December 14, 2016

Page 6 of 10

#### Spring and Fall Groundwater Index (GWI, Acre-Feet)

| Year | Rainfall<br>(inches) | Spring GWI<br>(Acre-Feet) | Number<br>of Wells | Fall GWI<br>(Acre-Feet) | Number<br>of Wells | Spring to Fall<br>Difference<br>(Acre-Feet) |
|------|----------------------|---------------------------|--------------------|-------------------------|--------------------|---------------------------------------------|
| 1975 | 17.29                | 99.000                    | 54                 | 91.000                  | 54                 | 8.000                                       |
| 1976 | 13.45                | 82,000                    | 45                 | 76,000                  | 65                 | 6,000                                       |
| 1977 | 10.23                | 64,000                    | 59                 | 54.000                  | 63                 | 10.000                                      |
| 1978 | 30.66                | 84,000                    | 62                 |                         | 35                 |                                             |
| 1979 | 15.80                | 72.000                    | 57                 | 77.000                  | 63                 | (5.000)                                     |
| 1980 | 16.57                | 88.000                    | 55                 | 89.000                  | 46                 | (1,000)                                     |
| 1981 | 13.39                | 97.000                    | 46                 | 75.000                  | 47                 | 22.000                                      |
| 1982 | 18.58                | 123,000                   | 42                 |                         | 31                 |                                             |
| 1983 | 33.21                |                           | 35                 | 95,000                  | 42                 |                                             |
| 1984 | 11.22                |                           | 14                 | 76,000                  | 37                 |                                             |
| 1985 | 12.20                | 106,000                   | 37                 | 82,000                  | 41                 | 24,000                                      |
| 1986 | 16.85                | 98,000                    | 51                 | 67,000                  | 51                 | 31,000                                      |
| 1987 | 11.29                | 83,000                    | 48                 | 71,000                  | 52                 | 12,000                                      |
| 1988 | 12.66                | 80,000                    | 51                 | 66,000                  | 49                 | 14,000                                      |
| 1989 | 12.22                | 59,000                    | 47                 | 47,000                  | 57                 | 12,000                                      |
| 1990 | 7.12                 | 62,000                    | 55                 | 49,000                  | 53                 | 13,000                                      |
| 1991 | 13.18                | 62,000                    | 52                 | 55,000                  | 54                 | 7,000                                       |
| 1992 | 15.66                | 61,000                    | 52                 | 35,000                  | 48                 | 26,000                                      |
| 1993 | 20.17                | 72,000                    | 54                 | 52,000                  | 61                 | 20,000                                      |
| 1994 | 12.15                | 60,000                    | 54                 |                         | 36                 |                                             |
| 1995 | 25.87                | 87,000                    | 35                 | 74,000                  | 52                 | 13,000                                      |
| 1996 | 16.54                | 76,000                    | 45                 | 62,000                  | 57                 | 14,000                                      |
| 1997 | 20.50                |                           | 20                 | 91,000                  | 48                 |                                             |
| 1998 | 33.67                | 105,000                   | 41                 | 93,000                  | 44                 | 12,000                                      |
| 1999 | 12.98                | 106,000                   | 56                 | 88,000                  | 49                 | 18,000                                      |
| 2000 | 14.47                | 108,000                   | 44                 | 84,000                  | 41                 | 24,000                                      |
| 2001 | 21.62                | 118,000                   | 43                 | 85,000                  | 35                 | 33,000                                      |
| 2002 | 10.25                | 96,000                    | 29                 | 79,000                  | 41                 | 17,000                                      |
| 2003 | 11.39                | 94,000                    | 37                 | 66,000                  | 42                 | 28,000                                      |
| 2004 | 12.57                | 89,000                    | 42                 | 81,000                  | 35                 | 8,000                                       |
| 2005 | 22.23                | 98,000                    | 38                 | 79,000                  | 39                 | 19,000                                      |
| 2006 | 20.83                | 107,000                   | 44                 | 78,000                  | 41                 | 29,000                                      |
| 2007 | 7.11                 | 93,000                    | 44                 | 66,000                  | 42                 | 27,000                                      |
| 2008 | 15.18                | 83,000                    | 43                 | 65,000                  | 42                 | 18,000                                      |
| 2009 | 10.31                | 76,000                    | 44                 | 65,000                  | 43                 | 11,000                                      |
| 2010 | 20.07                | 80,000                    | 45                 | 67,000                  | 42                 | 13,000                                      |
| 2011 | 34.05                | 87,000                    | 43                 | 81,000                  | 43                 | 6,000                                       |
| 2012 | 15.35                | 89,000                    | 45                 | 65,000                  | 44                 | 24,000                                      |
| 2013 | 8.07                 | 67,000                    | 45                 | 42,000                  | 43                 | 25,000                                      |
| 2014 | 4.72                 | 57,000                    | 45                 | 47,000                  | 42                 | 10,000                                      |
| 2015 | 8.09                 | 52,000                    | 42                 | 45,000                  | 39                 | 7,000                                       |
| 2016 | 11.10*               | 62,000                    | 39                 | 50,000                  | 41                 | 12,000                                      |

---: Insufficient for evaluation

\*: Preliminary value

Table 1: GWI computed from Spring 1975 to Fall 2016.

 $t: \verb| district projects \verb| water resources mgmt \verb| gw index \verb| 20161214 tm32 2016 gwi.doc||$ 

#### TO: Mario Iglesias, GM NCSD Spring and Fall 2016 GWI RE: DATE: December 14, 2016 Page 7 of 10



1 2 3

4

# TO:Mario Iglesias, GM NCSDRE:Spring and Fall 2016 GWIDATE:December 14, 2016

Page 8 of 10

| Year | Spring GWI (AF) | Fall GWI (AF) | Rainfall (in) | CSDM Ave 16.32 (in) | CSDM Ave 16.32 (AF) | CU Prod (AF) | Deep Perc from Rain (AF) | Total CU (AF) | Fin (AF) | Fout (AF) | Fin - Fout (AF) | Total Production (AF) |
|------|-----------------|---------------|---------------|---------------------|---------------------|--------------|--------------------------|---------------|----------|-----------|-----------------|-----------------------|
| 1975 | 99000           | 91000         | 17.29         | 17.29               | 27966.575           | 3340         | 2153                     | 29153.575     | 110      | 1710      | -1600           | 4420                  |
| 1976 | 82000           | 76000         | 13.45         | 14.42               | 23324.35            | 3480         | 890                      | 25914.35      | 220      | 1660      | -1440           | 4610                  |
| 1977 | 64000           | 54000         | 10.23         | 8.33                | 13473.775           | 3760         | 60                       | 17173.775     | 400      | 1670      | -1270           | 5040                  |
| 1978 | 84000           | 77000         | 30.66         | 22.67               | 36668.725           | 3470         | 18814                    | 21324.725     | 340      | 1610      | -1270           | 4640                  |
| 1979 | 72000           | 89000         | 15.80         | 22.15               | 35827.625           | 3800         | 2673                     | 36954.625     | 410      | 1630      | -1220           | 5110                  |
| 1980 | 88000           | 75000         | 16.57         | 22.40               | 36232               | 3920         | 3241                     | 36911         | 460      | 1700      | - 1240          | 5280                  |
| 1981 | 97000           | 95000         | 13.39         | 19.47               | 31492.725           | 4050         | 1170                     | 34372.725     | 610      | 1610      | -1000           | 5500                  |
| 1982 | 123000          | 76000         | 18.58         | 21.73               | 35148.275           | 4170         | 3380                     | 35938.275     | 680      | 1630      | -950            | 5680                  |
| 1983 |                 | 82000         | 33.21         | 38.62               | 62467.85            | 4110         | 21564                    | 45013.85      | 800      | 1570      | -770            | 5630                  |
| 1984 |                 | 67000         | 11.22         | 33.52               | 54218.6             | 4570         | 680                      | 58108.6       | 790      | 1770      | -980            | 6330                  |
| 1985 | 106000          | 71000         | 12.20         | 29.40               | 47554.5             | 4640         | 850                      | 51344.5       | 810      | 1720      | -910            | 6420                  |
| 1986 | 98000           | 66000         | 16.85         | 29.93               | 48411.775           | 5240         | 3210                     | 50441.775     | 1030     | 1720      | -690            | 7200                  |
| 1987 | 83000           | 47000         | 11.29         | 24.90               | 40275.75            | 5520         | 790                      | 45005.75      | 1210     | 1720      | -510            | 7680                  |
| 1988 | 80000           | 49000         | 12.66         | 21.24               | 34355.7             | 5640         | 1190                     | 38805.7       | 1260     | 1690      | -430            | 7860                  |
| 1989 | 59000           | 55000         | 12.22         | 17.14               | 27723.95            | 5840         | 960                      | 32603.95      | 1400     | 1710      | -310            | 8180                  |
| 1990 | 62000           | 35000         | 7.12          | 7.94                | 12842.95            | 6500         | 10                       | 19332.95      | 1490     | 1710      | -220            | 9230                  |
| 1991 | 62000           | 52000         | 13.18         | 4.80                | 7764                | 6070         | 3097                     | 10737         | 1600     | 1710      | -110            | 8560                  |
| 1992 | 61000           | 74000         | 15.66         | 4.14                | 6696.45             | 6070         | 4315                     | 8451.45       | 1560     | 1690      | -130            | 8530                  |
| 1993 | 72000           | 62000         | 20.17         | 7.99                | 12923.825           | 5980         | 8895                     | 10008.825     | 1700     | 1650      | 50              | 8430                  |
| 1994 | 60000           | 91000         | 12.15         | 3.82                | 6178.85             | 6110         | 930                      | 11358.85      | 1740     | 1670      | 70              | 8540                  |
| 1995 | 87000           | 93000         | 25.87         | 13.37               | 21625.975           | 5860         | 15193                    | 12292.975     | 1690     | 1590      | 100             | 8230                  |
| 1996 | 76000           | 88000         | 16.54         | 13.59               | 21981.825           | 6260         | 5947                     | 22294.825     | 1720     | 1590      | 130             | 8770                  |
| 1997 |                 | 84000         | 20.50         | 17.77               | 28742.975           | 6360         | 11504                    | 23598.975     | 1770     | 1530      | 240             | 8990                  |
| 1998 | 105000          | 85000         | 33.67         | 35.12               | 56806.6             | 6640         | 25257                    | 38189.6       | 1830     | 1470      | 360             | 9380                  |
| 1999 | 106000          | 79000         | 12.98         | 31.78               | 51404.15            | 7250         | 1520                     | 57134.15      | 1610     | 1530      | 80              | 10230                 |
| 2000 | 108000          | 66000         | 21.62         | 37.08               | 59976.9             | 7420         | 2772                     | 64624.9       | 1600     | 1610      | -10             | 10530                 |
| 2001 | 118000          | 81000         | 10.25         | 31.01               | 50158.675           | 7400         | 8387                     | 49171.675     | 0        | 0         | 0               | 10570                 |
| 2002 | 96000           | 79000         | 14.47         | 29.16               | 47166.3             | 7860         | 0                        | 55026.3       | 0        | 0         | 0               | 11270                 |
| 2003 | 94000           | 78000         | 11.39         | 24.23               | 39192.025           | 7630         | 890                      | 45932.025     | 0        | 0         | 0               | 10980                 |
| 2004 | 89000           | 66000         | 12.57         | 20.48               | 33126.4             | 7660         | 1570                     | 39216.4       | 0        | 0         | 0               | 11020                 |
| 2005 | 98000           | 65000         | 22.23         | 26.39               | 42685.825           | 7550         | 12401                    | 37834.825     | 0        | 0         | 0               | 10950                 |
| 2006 | 107000          | 65000         | 20.83         | 30.90               | 49980.75            | 7940         | 10968                    | 46952.75      | 0        | 0         | 0               | 11480                 |
| 2007 | 93000           | 67000         | 7.11          | 21.69               | 35083.575           | 8670         | 0                        | 43753.575     | 1400     | 30        | 1370            | 12550                 |
| 2008 | 83000           | 81000         | 15.18         | 20.55               | 33239.625           | 8290         | 5974                     | 35555.625     | 0        | 0         | 0               | 12600                 |
| 2009 | 76000           | 65000         | 10.31         | 14.54               | 23518.45            | 8580         | 130                      | 31968.45      | 0        | 0         | 0               | 12210                 |
| 2010 | 80000           | 67000         | 20.07         | 18.29               | 29584.075           |              |                          |               |          |           |                 | 10950                 |
| 2011 | 87000           | 81000         | 34.05         | 36.02               | 58262.35            |              |                          |               |          |           |                 | 10538                 |
| 2012 | 89000           | 65000         | 15.35         | 35.05               | 56693.375           |              |                          |               |          |           |                 | 11249                 |
| 2013 | 67000           | 42000         | 8.07          | 26.80               | 43349               |              |                          |               |          |           |                 | 16349                 |
| 2014 | 57000           |               | 5.75          | 16.23               | 26252.025           |              |                          |               |          |           |                 |                       |

Table 2: Hydrologic Inventory.

 $t: \verb+ district projects \verb+ water resources mgmt \verb+ gw index \verb+ 20161214 tm32 2016 gwi.doc$ 

TO: Mario Iglesias, GM NCSD

RE: Spring and Fall 2016 GWI

DATE: December 14, 2016

Page 9 of 10

| Correlation Coefficients                  |                 |                                           |  |  |  |  |
|-------------------------------------------|-----------------|-------------------------------------------|--|--|--|--|
|                                           | Spring GWI (AF) | Rainfall (inches)                         |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| Rainfall (inches)                         | 0.321931649     | 1                                         |  |  |  |  |
|                                           |                 |                                           |  |  |  |  |
|                                           | Spring GWI (AF) | CSDM <sub>r</sub> Ave 16.32 (in)          |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| CSDM <sub>r</sub> Ave 16.32 (in)          | 0.713615266     | 1                                         |  |  |  |  |
|                                           |                 |                                           |  |  |  |  |
|                                           | Spring GWI (AF) | CSDM <sub>r</sub> - Total Production (AF) |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| CSDM <sub>r</sub> - Total Production (AF) | 0.746482469     | 1                                         |  |  |  |  |
|                                           |                 |                                           |  |  |  |  |
|                                           | Spring GWI (AF) | CSDM <sub>r</sub> - CU Prod (AF)          |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| CSDM <sub>r</sub> - CU Prod (AF)          | 0.816018004     | 1                                         |  |  |  |  |
|                                           |                 |                                           |  |  |  |  |
|                                           | Spring GWI (AF) | CSDM <sub>r</sub> + Net F (AF)            |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| CSDM <sub>r</sub> + Net F (AF)            | 0.811533071     | 1                                         |  |  |  |  |
|                                           |                 |                                           |  |  |  |  |
|                                           | Spring GWI (AF) | CSDM <sub>r</sub> - CU Prod + Net F (AF)  |  |  |  |  |
| Spring GWI (AF)                           | 1               |                                           |  |  |  |  |
| CSDM <sub>r</sub> - CU Prod + Net F (AF)  | 0.816884199     | 1                                         |  |  |  |  |

1 2 3

Table 3: Correlation Coefficients.





Figure 2: Scatter plot of GWI and CSDM<sub>r</sub> - CU + Net F data from 1975 to 2009.

2 3

1